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THEORY OF INVERSE MOMENTS *

Z akkula G ovindarajulu

Case Institute of Technology

0. S The characteristic function for inverse moments called the

inverse characteristic function (inverse c.f.) is defined. Liafounov's

inequality for inverse moments is obtained. Various properties, in

particular, the uniqueness property (also called the inversion formula),

limit and continuity properties, are studied. Illustrations are provided

wherever necessary. Many results admit multivariate generalizations. In-

verse order statistics are defined. Also, some applications of inverse

moments are considered.

1. Introduction. Inverse moments of the binomial, Poisson, negative binomial

and the hypergeometric distributions truncated at zero have been studied in

[31, [4], [51, [6], [8], [10], [11] and [12]. Also, inverse moments of the

gamma and the beta distributions have been used as approximations to the

inverse moments of the positive discrete random variables. (See [41, [6]

and [9] ). Hence, it is of interest to study the inverse moments and the

characteristic function for inverse moments of an arbitrary distribution.

2. Notation. Let X denote an arbitrary random variable (r.v.) and F(x)

denotes its cumulative distribution function (c.d.f.). Let oCk and k

respectively denote the kth inverse moment and kth absolute moment of

X(k = 0, 1, ...). c(t) = E(eit/X) denotes the inverse characteristic
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ment Command, under Research Grant AFOSR 62-72. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
This research was also supported from Case Research Funds.
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ec

crocal of the
function (inverse c.f.) of X. 0I can be interpreted as fe armonic

mean and can be interpreted as the expected attraction on a particle,

the law according to which this particle is attracted by another particle

distant d is proportional to d-k (k = 1, 2, ...). Also, let Y be de-

fined as the reciprocal of X, having G(y) for its c.d.f. The character-

istic function for regular moments will be called the regular c.f. Through-

out i denotes square root of -1. Let [.] denote the largest integer

contained in (.).

3. Assumptions. We follow the convention that all c.d.f.'s are contin-

uous from the right. Throughout, it is assumed that

(3.1) F(O) - F(0-) = 0.

Notice that the above condition is satisfied if F(x) is continuous at

x = 0.

4. Results. In this section, we state and provide proofs for the

properties of the inverse moments and the characteristic function for

the inverse moments.

Result 4.. Let X and Y be any random variables with F(x) and G(y)

respectively as c.d.f.'s. If

Y = X-1 and F(O+) - F(O-) = 0, then

(4.1) G(y) = 1 - F(I/y) + P(X = l/y)

and the inverse characteristic function c(t) of X will be the regular

characteristic function of Y.

Proof:. G(y) = P(Y < y) = P(X > l/y)

= 1 - F(1/y) + P(X = 1/y)

If l/y is a continuity point of X then P(X = l/y) = 0.
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Consider 0
c(t) =L eit/x dF(x) = + - + f+ e dF(x)

- -@

0- i t y

j -0- + t dF(l/y)

=0 + :5 eity dG(y)

co eit y dG(y)

This completes the proof of the assertion.

Example 4.1.1. Let X be defined as follows:

P(X = k) = 2k, k = 1, 2,....

If Y = l/X, then G(y) 2 - 2-- /yS
k=[i/y]+l

Remark 4.1.,. Result 4.1 plays an important role in providing simple proofs

for most of the foregoing results, which are extensions of results that hold

for a regular characteristic function.

Definition 4.2.i. A sequence of c.d.f.'s [Fn(x)3 is said to be convergent,
if there is a non-decreasing function F(x) such that Fn(x) ---> F(x) at

every continuity point of F(x). [See Cramer [1], p.60].

Result 4.2. A sequence of distributions with c.d.f.'s Fl(x), F2 (x), ...

converges to a distribution if and only if there is a c.d.f. F(x) such

that Fn ---> F at every continuity point of F(x) - when such a function

F(x) exists, F(x) is called the c.d.f. corresponding to the limiting dis-
tribution of the sequence, and we can briefly say that the sequence

[Fn(x)] or [Xn] converges in distribution to F(x).

Proof: See Cramer [1], pp.59-60.



Result 4.3. If a sequence of random variables (Yn] is such that its

sequence of c.d.f.'s [Gn(Y)l converges to a c.d.f. G(y) in the sense

of Definition 4.2.1, then the sequence of c.d.f.'s [Fn(x)) of the random
variables Xn  i/Y n = 1, 2, ... also converges to the c.d.f.

F(x) where F(x) = 1 - G(l/x) at every continuity point of G(y), and

conversely.

Proof: Assume that Gn (y) --> G(y) at every continuity point of G. We

will show that Fn(x) --> F(y) at every continuity point of F. Since

Gn(y) -- G(y), we can find n large such that

I Gn(y) - G(y) e , for every given e > 0.

Now, consider

Fn(1/y) - F(l/y) = G(y) - Gn(Y) ,

after using Result 4.1. Consequently

I Fn(1/y) - F(1/y) I = IGn(y) - G(y) I •

Hence the assertion. The above inequality can be used to prove the con-

verse also.

Result 4. . If I X > 0, then Ok < 1/ek (k > 0).

where Ok is the kth absolute inverse moment of X. The proof is trivial.

Result 4.5. For any real a, b, c such that a > b > c > O, we have

a-c a-b b-c(4.2) b < c Pa

Proof: Pk will be the regular absolute moment of Y which is the

reciprocal of X. Appealing to the Liafounov's inequality for the regular

absolute moments (See [12 pp.264-67) the above result readily follows.
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Corollary 4.5.1. Putting b = (c + a)/2 in (4.2) we get

2(c+a)/ 2 'S P a •

Corollary 4.5.2. Put c = 2k and a = 2m (k and m are two positive in-

tegers such that k < m) in Corollary 4.1 and obtain

2 k+m S 2k P2 2
' or O+m < '2k '21

where O k denotes the kth  inverse moments of X. The inequality for

the c(' s follows because

I k+m I _ Pk+m ' 2 =  2j all integral J.

Corollary 4.5.3. With c = 0 in (4.2) we obtain

a b (or ) 1/b (P) /a
b - a or <_ b a

which implies that (en Pk)/k is an increasing function of k.

Corollary k.5,. We have

Proof: This result follows from a repeated application of Corollary 4.5.3.

However, one can establish this result directly by considering the

quadratic form

f [u Ix 1(l- k)/2 + v Ix - ( l k)/23 dF(x)
-M

- u2 2
=X-1 u + 2 P uv + Pk+l v

which is obviously non-negative. Hence, the determinant of the quadratic

form is non-negative. That is

k k k1
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Writing the preceding inequality successively for k = 1, 2, ... , m and

multiplying them, we obtain

m+l m I/m l/ i(m+l)
m < P m+l or P < m+l '

from which Corollary 4.4 follows. The above method of proof is due to

Cramer (See [l],p. 176).

Result 4.6. An inverse c.f. is uniformly continuous on the entire real

line and satisfies the conditions

c(0) = l, jc(t)j 5 1 (-m< t < -

Proof: Follows from the fact that c(t) is the regular c.f. of Y and

hence is uniformly continuous on the entire real line and satisfies the

above conditions.

Result 4.7. If Pk' the kth  absolute inverse moment of X exists,

then all inverse absolute moments Pm for m < k exist.

Proof: This follows from Corollary 4.5.4.

Result 4.8. If X has an inverse moment of order k, then its character-

istic function c(t) has continuous derivatives of order up to and in-

cluding k. Also,

m= i-m[dm c(t)1 t=O (m = 1, 2, ..., k)

Consequently, we have

k

c(t) = c Om(it)m/m + o(tk) ,

m=0

where o(t k ) denotes the error term which when divided by tk tends to

zero as t-0 0.
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Proof: By definition we have

c(t) = S eit/X dF(x)

dkc(t) = ik jx -k eit/x dF(x)

dt

since by hypothesis

S IxI-k dF(x) <

the differentiation underneath the integral sign is permissible. Putting

t = 0 we get

i - k c(k) ( O) 0k

Rest follows by expanding c(t) as Taylor series.

Example 4.8.1. Let f(x) = e-x xP-1 /r(p) , x,p > 0.

Then
C(k = (p-1) (p-2) ... (p-k), k < p.

Hence [p]
c(t) = 1 + ] [it k (p-1) (p-2) ... (p-k)

k=1

Example 4.8.2. Consider

f(x) = x- 2 e-1/x x > o,

= 0 otherwise.

Then,

c(t) = 1 + E (it)k (l-it)
- I

k=l

Example 4.8.3. Consider

f(x) = X- 2 , I < x <

= 0 otherwise.
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Then u
c7)= (it) k/(k+l) '.  (it) - I (e it -)

k=l

Examnle 4.8.4. Let

F() 0, x < a

=i x>a, a O .

Then

c(t) eit/a = 1 + , (it)k/ak k!

k=1

Result 4.9. If the inverse c.f. c(t) has a finite derivative of even

order 2k at t=O, then the 2kth inverse moment c2k exists and consequently

all moments of order m < 2k.

Proof: This is a converse of Result 4.8. The method of proof will be

similar to the one used by Cramer (See [1],p.89).

Consider (it/x e-it/x)2k

= (-l)k lia (in t/x)2k dF(x)
t -4O -

Also, for any finite interval (a,b) we have

b 2k (sntx 2

x- 2 k dF(x) = lir t dF(x) < I c (2k)(0)l
a t -.>0

Now, using Corollary 4.5.4, we can complete the proof. This result exhibits

the relationship between the differentiability properties of c(t) and the

behavior of F(x) for small values of x, because the behavior of F(x)

for small values of x determines the existence of the inverse moments c(k
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Result 4,10. A bounded and continuous function c(t) is an inverse charac-

teristic function of a distribution if and only if c(O) = 1 and that the

function

*(xA) = J O c(t-u) ei(t-u)/x dt du
0. 0

is real and non-negative for all real x and all A,> 0. "

Proof: Cramer has established this result for the regular characteristic

function of an arbitrary random variable. (See (1], p.91 and [2] ). Hence,

the result can be applied to the regular c.f. of Y namely c(t). This

completes the proof.

Result 4,11. (Levy's inversion formula). If x and x2 are continuity

points of F(x) then,

F(x2) - F(x) = (2n) lim T - e (it)- c(t) dt

T T--> -T

Proof: The above result can be established directly as follows:

Assume xI < x2 (without loss of generality). Write

Ic = () -i it/Xl -e c(t) dt
-T ( c

= ,-l [sin t(z- 1 - x 1 ) - sin t(z-1 - x2 1 )t- 1 dt dF(z),

-m0

after changing the order of integration.

Now, choose b so large that xl 1 -1 > xl + b-i and write
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(x 1 1+b-l )- i (x 1 -- )-i (x 2 l1+b- )- i (x 2 l -.-1) -i
r + + r

- a 1 j1 1 1 1i 1_
(xl-l-i (1-1 -1 (Xl+b

- G(T,z; XlX 2) dF(z)

(xl &1l-

where

G(T,z;xl,x2 ) iff1  [sin (z-I- x 1) t - sin (z-l-x21 )t] t - I dt
0

From here on the proof will be identical to the one given by Gnedenko and

Kolmogorov (See [7],pp.49-50).

Alternate Proof: Since c(t) is the regular c.f. of Y, we can apply Levy's

inversion formula and obtain

G(Y2) - G(yl) = (2T)-1 lim je-itY2 _ e-itYl (it)-i c(t) dt

T - -T [

where G is the c.d.f. of Y and yl and Y2 are points of continuity

of G(y). Now replace yl by 1/xl, Y2 by 1/x2  and use (4.1) and obtain

F(~~~ (2T 1ei. - i Vx "it/xl

F(xl) F(x2 ) = (2) -  lim e - e (it)-  c(t) dt
" T --om -T

This completes the proof.

Result 4.12. The distribution function is uniquely determined by its in-

verse onaracteristic function.

Proof: Using Result 4.11 it readily follows that at every continuity

point x of F(x) we have
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F(x) = (2) I lim lim [it/x- eit/u] (it)YI c(t) dt,

where the limit in u is taken over the set of continuity points of F(u).

Interchanging the limits we obtain

F(x) = (2) -I lim f e(e-'t/x-l) (it) - ' c(t) dt

T--. -T

Corollary 4.12.1. If F' (x) f(x) exists at x, then

f(x) = (2T x2 )_l J eit/x c(t) dt

where the principal value of the integral is considered.

Remark 4,12.1. Results 4.11 and 4.12 will hold if F(x) is an arbitrary

right continuous function of bounded variation, subject to the restriction

F(- a) = 0 (See Gnedenko and Kolmogorov [7], p.50).

Example 4.12.1. Find the density function of the random variable which

has 1/(l-it) for its inverse c.f.

f(x) = (2 X2)-l O e-it/x (i-it)-l dt

The residue at t= -i is e-l/x, when x > 0. Consequently,

f(x) = x - 2 e- l / x , x > 0 .

Result 4.13. The inverse characteristic function of a random variable X

is real if and only if X is symmetrical about zero; i.e. if for every x

F(x) = 1 - F(-x + 0)

Proof: Assume that F(x) is symmetric about zero. Then
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c(t) ei t / x dF(x) =0- rO +  r et/x dF(x)

= e 1' dfl-F (-x + 0) j eit/x dF(x)

-, 0

since F(O+) - F(O-) = 0 by our assunption. Therefore

c(t) = ,* (eit/x + e-it/x) dF(x)
J6

2j+ cos t/x dF(x)

Result 4,14. Assume that c o = 1, i' ..." the inverse moments are finite

0

and that the series Z(k rk/k. is absolutely convergent for some r > 0.

0

Then F(x) is the only c.d.f. having (o, G(I' ..." for its inverse moments.

Proof: Let Y = X-1  and let G(y) be the c.d.f. of Y. Then
Co = 1, 0(l, ... will be the regular moments of Y and by applying

Cramer's theorem (See [1], pp. 176-177). We can assert that G(y) is the-

only c.d.f. having (o 0(,i, ... for its regular moments. It now follows

from Result 4.1 that F(x) = 1 - G(l/x) + p(X = x) is the only c.d.f. having

(' ' "'" for its inverse moments. Also, one can proceed along the lines

of Cramer and establish that a set of inverse moments uniquely determine

the inverse c.f. and by the inversion formula (or uniqueness theorem)

uniquely define the c.d.f.

Result .15. (Kendall & Rao's Theorem). Let c(2,n be the second in-

verse moments of Xn in the sequence fXn}. If

0(2,n <B < , n = 1, 2,
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then, there is a subsequence of [Xn] which converges in distribution.

Proof: Define Y = X-1 and the corresponding sequence (Yn. 2,n will

be the regular second moment of Y . Since the regular second moment of the

random variable Yn in the sequence [Yn) is finite, we can apply the

theorem due to Kendall and Rao (See Wilks [14], p. 127) and assert that

there exists a subsequence (Yn I which converges in distribution. Now,

from Result 4.2, we have the corresponding sequence X} where

= y-1 also converging in distribution. This completes the proof.
nk

Result 4.16. Let [X be a sequence of random variables. Let ck,n, the

k th inverse moments of X be finite for all n and k. Let

lim ck,n = 0k < w , for all k. Then if [XnI converges in distribu-

tion to F(x), <o, 41, ... is the inverse moment-sequence of F(x). Con-

versely, if [kI uniquely determines a c.d.f. F(x), it is the limiting

c.d.f. of [X n.

Proof: Assume that [X n converges in distribution to F(x). We will

show that 1fkI is the moment-sequence of F(x). Define the sequence

[Yn sucn that Yn = Xni Then (Yn3 converges in distribution to

G(y) = 1 - F(l/y) at every continuity point y of G. Now, applying the

result due to Kendall and Rao (See Wilks [14], pp. 128-129) we can assert

that c(k(k = 1, 2, ...) are the regular moments of G(y). Consequently

0(k(k = 1, 2, ...) are the inverse moments of F(x).

Proof for the converse: Proof will be similar to the one given in [14].

Assume that l' 2' ... uniquely determine a c.d.f. F(x). We will show

that the sequence [Fn(x)} convergesto F(x). From Result 4.15 we know

that every convergent subsequence of [Fn(x)} converges to some c.d.f.
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and from the first part of Result 4.16, we know that the limiting c.d.f.'s

for these subsequences must all have the same inverse moment sequence,

namely [frkl. However, since the sequence ('<kl is assumed to determine

a c.d.f. uniquely, the limiting c.d.f.'s for the subsequences of [Fn(x))

are all identical to F(x), having the inverse moments cCk(k = 0, l, 2, ... ).

Limit and Continuity Property of the Inverse c.f. We have seen that a

c.d.f. can be uniquely obtained by a certain transformation applied to the

inverse c.f. and vice versa. In the following, we will show that this

transformation is also continuous. Quite often, we are interested to know

whether a sequence of c.d.f.'s converge to a c.d.f. Towards this it might

be difficult to investigate the convergence of a sequence of c.d.f.'s, while

the convergence of inverse c.f.'s may be easy to investigate. Hence, con-

sider the following theorem which is a direct analogue of a result due to

Cramer and Levy.

Result 4.17. Let (Xnl be a sequence of random variables and [Fn(x)3

and [Cn(t)j denote the corresponding sequences of c.d.f.'s and inverse

c.f.'s. A necessary and sufficient condition for the sequence [Xn3 to

converge in distribution to a random variable X is that for every t,

the sequence Icn(t)j converges to a limit c(t) which is continuous

at t = 0. If the above conditions are satisfied, c(t) is identical to

the inverse c.f. of X.

Proof: Let us first show that the condition is necessary. Assume that

the sequence (Fn(X)j converges to F(x), the c.d.f. of X, at every

continuity point x of F(x). We will show that lim c n(t) = c(t)
n-

for every t. Now,

c (t) cos (t/x) dFn(x) + i j sin (t/x) dF(x)

The functions cos(t/x) and sin(t/x) are bounded on (-,0-)+ (0+,)

for every t, and F(O) - F(O-) = 0. Now, since Vyn(X)3 converges
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to the c.d.f. F(x) at every continuity point x, we have by Helley-

Bray theorem (See Lo've [9], p. 182)

lm j cos(t/x) dF n(x) cos(t/x) dF(x)

and

liam sin (t/x) dF n (x) = J sin(t/x) dF(x)
n -- - - @

Consequently lim c n(t) = c(t)
n -->

Now, consider the sufficiency of the condition. Assume that cn(t)- c(t)

for every t and that c(L) is continuous at t = 0. Consider the

sequence of random variables -1 and the corresponding c.d.f.sequnceof andm vria l Ynl , Yn = n

sequence [Gn(y)j, where Gn(y) = 1 - Fn(Y-1 ) + P(X = y-1), n = 1, 2,....

Then Icn(t) be the sequence of regular c.f.'s corresponding to the

sequence [Ynj. Now, it is known (See Cramer [1], pp. 60-62) that the

sequence of c.d.f.'s [Gn(Y)l contains a subsequence [Gn (y)j which con-

verges to a non-decreasing and right continuous function G(y). It can be

shown (for instance, See Cramer [1], p. 97) that G(y) satisfies the re-

maining criteria for a c.d.f. Also, c(t), the limit of the sequence (cn(t)l

is the regular c.f. of G(y). If there is another subsequence of [Gn(Y)l

which converges to a c.d.f. G*(y). Now, G*(y) also has c(t) for its

regular c.f. But by the uniqueness property (See Result 4.12) G*(y)=(y).

This implies that every convergent subsequence of [Gn(y)j converges to

the c.d.f. G(y). That is [Gn(y)j converges to the c.d.f. G(y). Now

applying Result 4.3, it follows that the corresponding sequence [Fn(x)l

converges to the c.d.f. F(x) = l-G(l/x).

Corollary 4.17.1. A necessary and sufficient condition for a sequence

(Xnj of random variables having the sequence of inverse c.f.'s (cn(t)1 ,
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to converge to the constant a 4 0 is that

lim Cn(t) = eit/a

n -- m

Result 4.18. A necessary and sufficient condition for the independence of two

r.v.'s X and Z is that their joint inverse c.f. c(t,u) can be written as

c(t,u) = c1(t) c2 (u)

when c and c2 are the inverse c.f.'s of X and Z respectively.

Proof: The proof will be identical to the one given by Cramer [1] (See p.266).

5. Special Properties ' the Inverse Characteristic Functions.

In this section we will present some special properties of the in-

verse c.f.'s.

Result 5.1. (i) If X is a r.v. having c(t) for its inverse c.f., then

the inverse c.f. of Z = aX-1 where a is a real constant, is c(t/a).

(ii) Xl, X2 , ..., Xn are independent r.v.'s having respectively

c1 (t), c2 (t), ..., Cn(t) for their inverse c.f.'s, then the inverse c.f. of

n

Z Lxak is given by

k=l

n
c(t) = JF Ck(t/a)

k=l

Further, if the X's are identical and ak =1/n (k 
= 1, 2, ...n) then the

inverse c.f. of Z is

c(t) = [c(t/n)]n

(iii) The squared modulus of an inverse c.f. is an inverse c.f.

Proof: (i) and ( ii) are elementary. Towards the proof for (iii) consider

X, and X2 which are independent and identically distributed r.v.'s
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having c(t) as the common inverse c.f. Then, from (ii) X 1-X2 (t), the

inverse c.f. of X l-X2  is

C X 1-X 2t C X1 (t) * c-X (t)

Result 5.2. Let X be a r.v. having F(x) and c(t) for its c.d.f. and

inverse c.f. respectively. If

F(A) -F(-A) <z

then

Ic(t 2  - c(t 1)1I A-' It2-tl1 + 2,

Proof: Consider

c(t 2  - c(t11 + Is 5 eit 2/x- ei'tl/x ldF(x)
IxIKA IxI>A

Since
izz2 i i d i'zI

Ies e 11 K z2- z1 1, dz

and I iz 2 iz 1 1 2

We have

Ic(t 2) c(t 1 2 5 dF(x) + jt2 - tljA1l

<(2. + It 2- t1 IA'l

Remark 5.2.1. This inequality can be used to establish directly the uniform

continuity of an inverse c.f. (Result 4+.7).

Reut53 With the notation as in Result 5.2, for A, Tr > 0, we have
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F(A) -F(-A) >_ [i- 1(2T)-1 c(t) dtl] [1-Ak - 1 ]

Proof: Consider

1(2t)- I  c(t)dtj = f(2.)- J {f eit/x dF(x)} dtlJT~~~ cT~t I f( -i j

= 1(2t)- j' T eit/x dt dF(x)l

= I P (x/) sin ( /x) dF(x)

<I J I + I f (x/) sin(-T/x) dF(x)•

Ix1A Ixl>A

Since Isin(r/x) / (r/x) I < and Isin(T/x) I 1. we obtain

I(2T) -I r'c(t)dt I < Ar-I [F(A) - F(-A)] + 1 - F(A) + F(-A)

= (A,-'- 1) [F(A) - F(-A)] + 1

from which the desired inequality follows. Further, if A = 2 r, the in-

equality becomes

F(:) - F(-M) > 2-2 I (2) jc (t) dt I
2 2--

Result 5.4. If c(t) is an inverse c.f. then for every t, we have

1 - Re c(2t) < 411 - Re c(t)],

where Re (.) denotes the real part of (.)

Proof: Re c(t) = J cos(t/x) dF(x)
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Hence:

1 - Re c(2t) = J [1 - cos(2t/x)] dF(x)

= 2 J sin 2(t/x) dF(x)

= 2 [ [1 - cos(t/x)] [1 + cos(t/x)] dF(x)

4 J [1 - cos(t/x)] dF(x)

=4 [1 - Re c(t)]

Note that if c(t) is real, the preceding inequality becomes

1 - c(2t) < 4[1 - c(t)]

Consequently, since, for an arbitrary c(t), Ic(t)l 2  is also an inverse

c.f. (See Result 4.1, (iii) ), we have

1 - Ic(2t)1 2 < 4[] - lc(t)121

Result 5.5. If c(t) is an inverse c.f. and if for some sequence tj,t2

converging to 0,

Ic(t)I = 1 ,

then there exists a real number at 0 such that

itac(t) = e

Proof: If c(t) is the inverse c.f. corresponding to a r.v. X, then c(t)

will be the regular c.f. of a r.v. Y = 1/X. Since, for a sequence ftj,

tk-'> 0, Ic(tk) I = 1, we can show (See Gnedenko and Kolmogorov (7],

Theorem 2, p. 56) that there exists a real number at 0 such that

c(t) = eiat

Notice that we can also give a direct proof along the lines of Gnedenko

and Kolmogorov (7].
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Remark 5.5.1. The condition of Result 5.5 will certainly be satisfied if

Ic(t)I = 1 for O<t<b(b>O)

Definition 5.6.1. A discrete variable is said to be a rational variable if
there exists a real number h > 0 such that every possible value of the

r.v. is of the form h/k where k takes integral values (not necessarily

all of them) zero excepted.

Result 5.6. In order that a random variable be a rational r.v. it is necessary

and sufficient that for some non-zero value of the argument the modulus of the

inverse c.f. of the r.v. be equal to unity.

Proof: The necessary part. Let

hk P [X = h/k3

then the inverse c.f. of X is given by

7 ikt/hc(t) = L e Pk

k= - cck O

!c(t)I = 1

The proof for the sufficiency part will be identical to the one in Gnedenko

and Kolmogorov [7] (See p. 59).

6. Inverse Cumulants or Inverse Semi-invariants. Let Xk denote the kth

inverse cumulant of the distribution where Xk are defined by

xk = the coefficient of (it) in en c(t).

That is

i +cc k(it)k/k. = Exp

1

By comparing the coefficients of powers on (it) we obtain

Xi:i C: "cc2 x3 3 2+Z etc.

X1=l' X2 ~2'l1 X3 etc.TO2
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and X, and X2 denote the expected value and the variance of 1/X where

X is the r.v. under consideration. It can easily be shown that if kth

inverse moment of X exists, then Xk exists and conversely.

7. Multivariate Generalizations. Many results of Section 4 can be gener-

alized to multivariate situations, especially Result 4.1, Taylor expansion
of the inverse c.f. (Result 4.8), Kendall & Rao's results (Result 4.15

and 4.16), inversion formula (Result 4.11), and continuity theorem (Result
4.17) and Result 4.18. The formulation and the proof of any multivariate
result will be a straight forward generalization of the corresponding result

for the univariate case. These are left to the reader.

8. inverse Order Statistics. Let X1,n < X2, n < ... < Xn,n be the order

statistics in a sample of size n drawn from the population with c.d.f.
F(x) and let Yl,n < Y2,n < ... < Yn,n be the order statistics in a sample

of size n drawn from the population with c.d.f. G(y), where the r.v.
corresponding to G(y) is the reciprocal of the r.v. corresponding to F(x).
We, further assume that either F(x) or G(y) is continuous. We have the

following results.

Result 8.1. The distributions of Ym,n and 1/Xnm+ln are identical,

m = 1, 2, ..., n.

Proof. Result 8.1 follows from the probability density of Y and

Result 4.1.

Result 8.2. The distributions of Y. ,n Ym,n and i/(Xnm+ln Xn-+l n)

are identical, 1 < m < n.

Proof. Result follows from the joint probability density of Y and

Y and Result 4.1.m~n

R . Results 8.1 and 8.2 enable us to compute the moments of the inverse

order statistics, Y in terms of the inverse moments of Xm,n m,n"
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9. Application of the Inverse Moments.

9.1 Inverse chi-distribution. Consider a random sample (xI, x2, ... xn )

drawn from a population having the following density function:

f(x; e) = (2/e)* x-2 e-l/(2x) x>0.

= 0 otherwise.

It can be easily verified that the maximum likelihood estimate of 0 is

given by n
A -

1  .-2

k=1

The regular moments of e will involve the inverse moments of the population.

9.2 Inverse Weibull distribution. Consider the density

f(x;e) = m (xm+l) -I e- I /exm, x > O, m > 0

= 0 otherwise.

Assume that m is known and we wish to estimate e on the basis of a
random sample (xI , x2, ... , Xn) drawn from the above population. The

method of maximum likelihood provides an estimate given by

n
A -1l7 -m
0n L xk

k=l

A

Again, the regular moments of e involve the inverse moments of the popu-

lation. If m = 1, the density function will be called the inverse ex-

ponential density.

Conclusion. There might be some real situations in which the distributions

mentioned above give a better fit than the classical distributions. How-

ever, the author has not explored such a situation.
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